NASA TECHNICAL NOTE NASA TN D-4030 C.1 LOAN COPY: RETURN TO AFWL (WL/L-2) KIRTLAND AFB, N MEX AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.5-DIAMETER CHORD, SINGLE-SLOTTED FLAP, AND SINGLE PROPELLER 0.08 CHORD BELOW WING by Marvin P. Fink Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - JULY 1967 AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.5-DIAMETER CHORD, SINGLE-SLOTTED FLAP, AND SINGLE PROPELLER 0.08 CHORD BELOW WING By Marvin P. Fink Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ## AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.5-DIAMETER CHORD, SINGLE-SLOTTED FLAP, AND SINGLE PROPELLER 0.08 CHORD BELOW WING By Marvin P. Fink Langley Research Center #### SUMMARY An investigation has been made in the Langley full-scale tunnel to determine the longitudinal aerodynamic characteristics of a large-scale semispan V/STOL tilt-wing configuration having a single propeller which was tested for both right- and left-hand modes of rotation. The model had a half-fuselage on which loads were measured separately. The wing had a ratio of chord to propeller diameter of 0.5, a 40-percent-chord single-slotted flap, an aspect ratio of 4.88 (2.44 for the semispan), a taper ratio of 1.0, and an NACA 4415 airfoil section. The data have not been analyzed in detail, but have been examined to observe the predominant trends. It was found that the direction of propeller rotation had a very significant effect on the lift and descent capability (as determined from drag-lift ratios attainable without stalling of any part of the wing within the propeller slipstream) and that up-at-the-tip rotation gave the more favorable results. The use of a trailing-edge flap was also very effective in increasing the descent capability. The use of flow-control devices (slat and fences) was very effective in increasing the descent capability and lift for the case of down-at-the-tip propeller rotation where the characteristics without such devices were poor, but was much less effective for the case of up-at-the-tip propeller rotation where reasonably favorable results were achieved without these devices. For the most favorable combination of the configuration variables, descent angles of nearly 29° were achieved over the entire test range of power conditions. #### INTRODUCTION Most of the aerodynamic research that has been done on tilt-wing propeller-driven V/STOL configurations in the past has been of an exploratory character and has been done with small-scale models. The interest in this type of airplane has now become so substantial, however, that there is need for large-scale systematic aerodynamic design data for this type of airplane. A program has therefore been inaugurated at the Langley Research Center to provide such information by means of tests of a large-scale semispan tilt-wing-and-propeller model. The results for the wing-alone configuration have been published in references 1 to 4. The results for the wing with a fuselage added are presented in references 5 to 7 for the cases of a double-slotted and a single-slotted flap. The results of the present tests are for the same configuration as reference 7 (single-slotted flap), but with the propeller thrust axis located 8 percent of the wing chord below the chord plane. The model had a single propeller on the semispan wing, a ratio of wing chord to diameter of 0.5, a single-slotted flap, a leading-edge slat, and fences. The investigation covered a range of angle of attack from 5° to 85° and a range of thrust coefficients (based on slipstream) from 0.30 to 0.90. Included in the investigation were tests with both directions of propeller rotation. The lift, drag, and pitching moments of the model were measured over the range of test conditions. The flow was observed by means of tufts on the upper surface of the wing. The results of this investigation are presented herein without detailed analysis in order to expedite their dissemination to industry and the military services. #### **SYMBOLS** The positive sense of forces, moments, and angles is shown in figure 1. The pitching-moment coefficients are presented with reference to the wing quarter-chord line. The coefficients are based on the dynamic pressure in the propeller slipstream. Conventional lift, drag, and pitching-moment coefficients based on the free-stream dynamic pressure can be obtained by dividing the slipstream coefficients by $1 - C_{T,s}$; for example, $C_L = C_{L,s} / (1 - C_{T,s})$. The thrust coefficient C_T' may be found from the equation $C_T' = \left[C_{T,s}(A/S)\right] / (1 - C_{T,s})$. Measurements for this investigation were made in the U.S. Customary System of Units. Equivalent values are indicated herein in the International System (SI) in the interest of promoting the use of this system in future NASA reports. Factors relating the two systems of units used in this paper may be found in the appendix. The coefficients and symbols used in this paper are defined as follows: - A total propeller disk area, ft² (meters²) - b propeller blade chord, ft (meters); or wing span, ft (meters) - $C_{D,s}$ drag coefficient based on slipstream, D/q_sS - C_L lift coefficient based on free airstream, L/qS $C_{L,s}$ lift coefficient based on slipstream, L/q_sS $C_{L,s(fus)}$ fuselage lift coefficient based on slipstream $C_{m,s}$ pitching-moment coefficient based on slipstream, M_Y/q_sS C_{T}^{\prime} thrust coefficient based on free airstream, T/qS $c_{T,s}$ thrust coefficient based on slipstream, $\frac{T}{q_s\left(\frac{\pi D^2}{4}\right)}$ c wing chord, ft (meters) $\mathbf{c_f}$ flap chord, ft (meters) D propeller diameter, ft (meters); also, total model drag, lbf (newtons) h width of slat or of flap-slot gap; also thickness of propeller blade, in. (centimeters) L total model lift, lbf (newtons) My pitching moment, lbf-ft (newton-meters) q free-stream dynamic pressure, $\frac{\rho V^2}{2}$, $\frac{lbf}{ft^2}$ $\left(\frac{newtons}{meters^2}\right)$ q_s slipstream dynamic pressure, $q + \frac{T}{\pi D^2/4}$ R radius of propeller blade, 2.83 ft (0.86 meter) r radius to element on propeller blade, ft (meters) s area of semispan wing, 19.6 ft² (1.821 meters²) T propeller thrust, lbf (newtons) ``` free-stream velocity, ft/sec (meters/sec) V longitudinal distance, ft (meters) x lower-surface ordinate, ft (meters) У, upper-surface ordinate, ft (meters) y_u vertical distance, ft (meters) \mathbf{z} wing angle of attack, deg α flight-path angle (positive for climb), \tan^{-1} \frac{C_{D,S}}{C_{I,S}}, deg γ flap deflection, deg \delta_{\mathbf{f}} mass density of air, slugs/ft³ (kilograms/meter³) ρ ``` #### MODEL The model used in this investigation was a semispan model which would represent the left panel of the full-span wing and the left half of the fuselage. The principal dimensions of the wing are given in figure 2. A three-view drawing of the fuselage-wing combination is given in figure 3. The propeller-blade characteristics are given in figure 4, and a photograph of the model is presented in figure 5. The wing was mounted on the scale balance system in the tunnel so that the lift and drag of the wing could be read directly about the wind axis. The wing pivoted about its quarter-chord point and its pitching moments were measured about this point and are referred to this point in the data presentation as indicated by figure 1. When the half-fuselage was added to the existing wing model, it was necessary to cause the fuselage to move relative to the wing quarter-chord point in order to avoid structural conflict between the wing and the fuselage. The fuselage was consequently mounted on a parallel arm arrangement so that it translated as the wing angle of attack was varied. The fuselage moved as though it were pivoted at the 58-percent wing-chord station on the wing lower surface. The illustration in figure 3 shows the relationship of the wing to the fuselage at a given angle of the wing. The fuselage, however, was not actually attached to the wing, and its forces did not register on the wing balance. Therefore, the load on the fuselage (lift only) was measured on separate strain-gage balances. At all times the fuselage remained at an angle of attack relative to the air-stream of 0° . The wing was constructed to allow numerous modifications to be made in the test configuration, such as a change of wing planform, change of airfoil, the addition of flow-control devices, deflection of the trailing-edge flap, and change of the direction of rotation of the propeller. The basic structure of the wing consisted of a heavy box-beam spar to which a power train to drive the propellers through spanwise shafting was attached, and around which various airfoil contours could be fitted. The propeller location was such that the propeller tip extended out to the wing tip. In the present investigation, both directions of propeller rotation were tested. The propeller thrust was measured by a strain-gage balance which was a part of the propeller shaft. The output was fed through sliprings to an indicating instrument. The required values of thrust for each value of $C_{T,s}$ were set by the operator by changing the speed of the propeller-drive motor. The blade angle at the 0.75R station of the propeller was held constant at 17° throughout the investigation. The propeller was located 0.08c below the wing chord plane and 0.65c ahead of the wing quarter-chord line as shown in figure 2(a). The thrust line was parallel to the wing chord line. The airfoil used on the wing was the NACA 4415 section with a 2.83 ft (0.86 m) chord. This chord length gave a ratio of wing chord to propeller diameter of 0.5. The reference area of the wing based on a semispan of 6.92 ft (2.11 m) was 19.6 ft² (1.82 m²) and did not include the area of the tip fairing. The model had a 0.40c
single-slotted trailing-edge flap. The flap ordinates and the positions for the various deflections are given in figure 2(c). The flap is illustrated in figure 2(c) for the 40° deflection. The leading-edge slat shown in figure 2(b) was investigated in combination with the flap on this model. The leading-edge slat was deflected 30° (low position) except for that portion which extended across the top of the fuselage. That section was reduced to 10° deflection (high position, see fig. 2(b)) so that low angles of attack ($\alpha = 5^{\circ}$) could be obtained without the slat touching the fuselage. Otherwise, the minimum angle of attack would have been about 15° . Fences having a height of 0.20c and extending from 0.13c on the lower surface around the leading edge to about 0.75c on the upper surface were installed at two spanwise locations on the wing (see fig. 2(d)) in an attempt to confine the center-section stall inboard of the propeller slipstream. When tests were made with fences on, both fences were installed. ## TESTS The tests were made for a range of single-slotted-flap deflections with and without a leading-edge slat and fences. The specific configurations tested, together with a list of tables and figures in which data for each may be found, are given in the following table: | Direction | | Flap | - | Figu | re | |-------------------------|-----------------------------------|---|----------------------|-----------------------------|----------------------------------| | of
rotation | Configuration | $\delta_{\mathbf{f}}$, deg | Table _(*) | Wing
aerodynamic
data | Fuselage
lift
coefficients | | Down at tip (left hand) | Basic leading edge | $\begin{cases} 0 \\ 20 \\ 40 \\ 60 \end{cases}$ | 1
2
3
4 | 6
7
8
9 | 37
37
37
37 | | | Basic leading edge with fences on | | 5
6
7
8 | 10
11
12
13 | 38
38
38
38 | | | Inboard slat | $\begin{cases} 20 \\ 40 \\ 60 \end{cases}$ | 9
10
11 | 14
15
16 | 39
39
39 | | | Inboard slat with fences on | $\begin{cases} 20 \\ 40 \\ 60 \end{cases}$ | 12
13
14 | 17
18
19 | 40
40
40 | | Up at tip (right hand) | Basic leading edge | $\begin{cases} 0 \\ 20 \\ 40 \\ 60 \end{cases}$ | 15
16
17
18 | 20
21
22
23 | 41
41
41
41 | | | Basic leading edge with fences on | $\begin{cases} 0 \\ 20 \\ 40 \\ 60 \end{cases}$ | 19
20
21
22 | 24
25
26
27 | 42
42
42
42 | | | Inboard slat | $\begin{cases} 20 \\ 40 \\ 60 \end{cases}$ | 23
24
25 | 28
29
30 | 43
43
43 | | | Inboard slat with fences on | $\begin{cases} 20 \\ 40 \\ 60 \end{cases}$ | 26
27
28 | 31
32
33 | 44
44
44 | | _ | Full-span slat with fences on | $\begin{cases} 20 \\ 40 \\ 60 \end{cases}$ | 29
30
31 | 34
35
36 | 45
45
45 | ^{*}The (a) part of each table gives the tabulated wing data and the (b) part gives the tabulated fuselage data. The tests were made over a range of thrust coefficients from 0.30 to 0.90. For any given test, the thrust coefficient was held constant over the angle-of-attack range by adjusting the propeller speed to give the required thrust at each angle of attack. The angle-of-attack range was from $5^{\rm O}$ to that required to stall the wing or to develop a draglift ratio of about 0.3, whichever occurred first. The test Reynolds number, based on the wing chord length and the velocity of the propeller slipstream, was about 2.38×10^6 . No tunnel-wall corrections have been applied to the data since surveys and analysis had indicated that there would be no significant correction, as explained in reference 1. #### DISCUSSION The data presented have not been analyzed in detail, but have been examined to observe general trends. A few such trends predominate. One very general observation was that the force-test data could not be used as an indication of the occurrence or extent of wing stalling. The tuft-tests results show that the onset of stalling over significant areas of the part of the wing within the propeller slipstream frequently occurs considerably below or above the angle of attack for maximum lift coefficient. The data were examined, in particular, to determine the effect of the various test variables on descent capability — the descent capability being determined from the drag-lift values attainable just prior to indication by the tufts of stalling of any part of the wing within the propeller slipstream and to determine the effect of the lower propeller position as compared with references 6 and 7. #### Effect of Direction of Propeller Rotation The force- and tuft-test data show that the up-at-the-tip direction of rotation consistently gave higher maximum lift and higher descent capability. In general, the tuft pictures show that with down-at-the-tip rotation, rough flow and stalling occurred at angles of attack as much as 25° to 30° lower than for the wing with up-at-the-tip rotation for the higher thrust coefficients, especially for $C_{T,S}=0.90$. Down-at-the-tip propeller rotation consistently causes stalling (of the part of the wing in the slipstream) to start inboard of the nacelle, that is, behind the up-going blades. When stall occurred on the wing for the up-at-the-tip mode of rotation, it most frequently occurred outboard of the nacelle. #### Effect of Leading-Edge Slat Comparison of figures 7 to 9 with figures 14 to 16 for down-at-the-tip rotation and figures 21 to 23 with figures 28 to 30 for up-at-the-tip rotation shows the effect of the inboard leading-edge slat. The force- and tuft-test data show that for both directions of propeller rotation, the slat was beneficial in extending maximum lift to higher angles of attack (particularly for the lower thrust coefficients, $C_{T,S} = 0.30$ and 0.60). Only for down-at-the-tip rotation and $C_{T,S} = 0.30$ and 0.60, however, did the slat give any appreciable increase in descent capability. For $\delta_f = 40^{\circ}$ and $\delta_f = 40^{\circ}$ and $\delta_f = 0.90$ and 0.80, the inboard slat had little effect on lift, but it was detrimental to descent capability. The effect of adding the outboard part of the slat (full-span slat configuration shown in figs. 34 to 36) was determined only for the case of up-at-the-tip rotation inasmuch as the wing tip was not stalled for down-at-the-tip rotation. In order to determine the effect of the outboard part of the slat, these data should be compared with those for the inboard slat alone (figs. 31 to 33). The tuft tests show that the outboard section of the slat reduced the tip stalling which occurred at the lower thrust coefficients and produced an appreciable increase in descent capability. With up-at-the-tip rotation, full-span slat, and fences (figs. 34 to 36), a descent capability of nearly 29° was obtained with a flap deflection of 60°. #### Effect of Fences The effect of fences can be ascertained for both directions of propeller rotation for the model with the basic leading edge and leading-edge slat installed conditions. Compare figures 7 to 19 for down-at-the-tip rotation and figures 20 to 33 for up-at-the-tip rotation. These results, as in previous investigations with the propeller thrust line above the wing chord and at 0.19c below the chord line, show that the fences were most effective for the case of down-at-the-tip mode of propeller rotation. In this case the wing has a tendency to stall inboard of the nacelle because of the rotation of the propeller slipstream. The fences are effective in preventing the center-section stall from spreading spanwise and prematurely triggering stall of the wing in the propeller slipstream inboard of the nacelle, especially at high thrust coefficients and flap deflections. Specifically, the results of the present tests show that the fences with up-at-the-tip rotation caused some slight increase in lift and descent capability. For the case of down-at-the-tip propeller rotation, however, the fences gave significantly more descent capability for flap deflections of 40° and 60°, particularly for the higher thrust coefficients and when used in combination with the slat as may be seen by comparing figures 14 to 19. ## Effect of Flap Deflection There was a progressive increase in maximum lift coefficient and descent capability as flap deflection was increased. The greatest increment occurred with the deflection from $0^{\rm O}$ to $20^{\rm O}$ for either mode of propeller rotation. It must be pointed out, however, that for down-at-the-tip rotation, the model with $\delta_{\rm f}=0^{\rm O}$ had a negative descent capability ($\gamma\approx20^{\rm O}$). (See fig. 6.) With a flap deflection of $20^{\rm O}$ (fig. 7), there was a change of descent angle of approximately $15^{\rm O}$ in the positive direction, but this change was not enough to produce any noticeable descent capability. With up-at-the-tip rotation, increasing flap deflection from 0^{0} to 20^{0} increased the descent capability from about 6^{0} to about 17^{0} . #### Fuselage Lift The fuselage lifts plotted in figures 37 to 45 are presented in the same nondimensional units as the wing lift coefficients. In general, the maximum fuselage lift occurred at about the angle of attack for maximum lift. This trend was true for the various flap deflections and for both directions of propeller rotation. The inboard slat and fences had no appreciable effect on the fuselage loading. ## Effect of Propeller Position An extensive analysis has not been made for the effects of propeller position on the model characteristics; but general observations of the results of reference 6 with the propeller above wing chord, the results of reference 7 with the propeller 0.19c below the wing chord, and the results of the subject investigation have been made. This cursory examination of the data indicates that the
lower propeller positions provide much higher descent capabilities than the higher positions do. For example, with a flap deflection of 20° and up-at-the-tip rotation, descent angles of about 13° were obtained for the high propeller position; whereas, for the low propeller position, a descent angle of about 27° was obtained at high thrust coefficient conditions. (See refs. 6, 7, and 8.) #### CONCLUSIONS The following conclusions were drawn from the results of the investigation: - 1. The direction of propeller rotation had a significant effect on the lift and descent capability attainable for most of the configurations tested, the up-at-the-tip mode of propeller rotation giving the more favorable results. - 2. Flow-control devices (slat and fences) were very effective in improving the descent capability for the down-at-the-tip mode of propeller rotation. With a leading-edge slat and fences, almost as favorable results could be achieved with this mode of propeller rotation as with up-at-the-tip rotation. - 3. The use of flaps was very effective in increasing the lift and the descent capability for either mode of rotation for most configurations. With flap deflections of 40° or $60^{\rm O}$ and with the most favorable combination of the flow-control devices of the test, descent angles of nearly $29^{\rm O}$ were achieved over the entire range of power conditions. Langley Research Center, National Aeronautics and Space Administration, Langley Station, Hampton, Va., February 16, 1967, 721-01-00-11-23. ### APPENDIX ### CONVERSION FACTORS - U.S. CUSTOMARY UNITS TO SI UNITS The International System of Units (SI) was adopted by the Eleventh General Conference on Weights and Measures, Paris, October 1960. (See ref. 9.) The following conversion factors are included in this report for convenience: | Physical quantity | U.S. Customary Unit | Conversion factor (*) | SI Unit | |-------------------|-----------------------|-----------------------|---| | Area | ft ² | 0.0929 | $meters^2$ (m^2) | | Density | slugs/ft ³ | 515.38 | kilograms/meter ³ (kg/m ³) | | Force | lbf | 4.448 | newtons (N) | | Length | ∫in. | 0.0254 | meters (m) | | Length | \ft | 0.3048 | meters (m) | | Moment | lbf-ft | 1.356 | newton-meters (N-m) | | Pressure | lbf/ft ² | 47.88 | newtons/meter 2 (N/m 2) | | Velocity | ft/sec | 0.3048 | meters/second (m/sec) | $^{^*}$ Multiply value given in U.S. Customary Unit by conversion factor to obtain equivalent value in SI Unit. #### REFERENCES - Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on a Large Semispan Tilting Wing With 0.6-Diameter Chord, Fowler Flap, and Single Propeller Rotating Up at Tip. NASA TN D-2180, 1964. - 2. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on Large Semispan Tilting Wing With 0.6-Diameter Chord, Single-Slotted Flap, and Single Propeller Rotating Down at Tip. NASA TN D-2412, 1964. - 3. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on Large Semispan Tilting Wing With 0.6-Diameter Chord, Single Slotted Flap, and Single Propeller Rotating Up at Tip. NASA TN D-1586, 1964. - 4. Fink, Marvin P.; Mitchell, Robert G.; and White, Lucy C.: Aerodynamic Data on a Large Semispan Tilting Wing With 0.5-Diameter Chord, Double-Slotted Flap, and Both Left- and Right-Hand Rotation of a Single Propeller. NASA TN D-3375, 1966. - 5. Fink, Marvin P.: Aerodynamic Data on a Large Semispan Tilting Wing With a 0.5-Diameter Chord, a Doubled-Slotted Flap, and Left- and Right-Hand Rotation of a Single Propeller, in Presence of Fuselage. NASA TN D-3674, 1966. - 6. Fink, Marvin P.; and Mitchell, Robert G.: Aerodynamic Data on a Large Semispan Tilting Wing With a 0.5-Diameter Chord, a Single-Slotted Flap, and Both Left- and Right-Hand Rotation of a Single Propeller. NASA TN D-3754, 1967. - 7. Fink, Marvin P.: Aerodynamic Data on Large Semispan Tilting Wing With 0.5-Diameter Chord, Single-Slotted Flap, and Single Propeller 0.19 Chord Below Wing. NASA TN D-3884, 1967. - Hassell, James L., Jr.; and Kirby, Robert H.: Descent Capability of Two-Propeller Tilt-Wing Configurations. Conference on V/STOL and STOL Aircraft. NASA SP-116, 1966, pp. 41-50. - 9. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1964. ## Table 1.- Aerodynamic data for down-at-tip rotation, basic leading edge, and $~\delta_f = 0^{\rm O}$ ### (a) Wing data | α, | C _{L,s} | $c_{D,s}$ | C _{m,s} | $c_{L,s}$ | $c_{D,s}$ | C _{m,s} | |---|--|--|---|---|--|---| | deg | C | T,s = 0. | 90 | C. | T,s = 0.8 | 30 | | 5
10
15
20
25
30
35
40
55
60
65
70 | 0.290
.449
.596
.737
.860
.955
1.056
1.143
1.215
1.269
1.297
1.301
1.302
1.283
1.251 | -1.122
-1.091
-1.041
981
796
685
567
453
326
178
050
.053
.155
.241 | 0.145
.158
.168
.191
.187
.191
.196
.199
.201
.199
.198
.210
.212
.215 | 0.352
.537
.711
.893
1.047
1.156
1.269
1.369
1.408
1.422
1.387
1.360 | -1.045
-1.013
957
875
770
639
508
354
188
044
.073
.179
.284 | 0.142
.161
.188
.197
.206
.206
.205
.214
.204
.193
.199
.205
.212 | | | С | T,s = 0.6 | 30 | $C_{T,S} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50 | 0.381
.582
.805
1.002
1.176
1.285
1.284
1.318
1.324
1.328 | -0.740
677
621
525
413
274
105
.021
.140
.268 | 0.103
.130
.147
.166
.167
.171
.143
.143
.144 | 0.428
.688
.936
1.146
1.318
1.172
1.280
1.262 | -0.353
-302
-230
-132
002
.129
.284
.406 | 0.035
.080
.100
.123
.112
.069
.065 | #### (b) Fuselage data | α, | | $c_{\mathrm{L,s(fus)}}$ | | | | | | | | |---|--|---|--|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{\mathrm{T,s}} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
45
50
60
65
70 | 0.006
002
012
017
013
003
.006
.009
.009
.019
.023
.026
.015
.017 | 0.014
.010
.004
.011
.022
.037
.044
.045
.051
.057
.053
.047 | -0.008
.003
.005
.015
.026
.041
.052
.058
.064 | -0.022
027
024
001
.016
.001
.024
.030 | | | | | | ## Table 2.- Aerodynamic data for downat-tip rotation, basic leading edge, and $~\delta_f=20^{\rm o}$ ## (a) Wing data | 1 | C- | C- | 1 0 | C | | 0 | |---|---|---|---|---|--|--| | α, | L,s | $c_{\mathrm{D,s}}$ | c _{m,s} | L,s_ | CD,s | c _{m,s} | | deg | c | T,s = 0.9 | 90 | $C_{T,S} = 0.80$ | | 30 | | 5
10
15
20
25
30
35
40
45
50
60
65 | 0.562
.711
.860
1.004
1.112
1.217
1.287
1.357
1.395
1.402
1.389
1.352
1.326 | -1.039
987
903
811
687
573
444
305
179
050
.077
.170 | 0.006
.020
.017
.029
.029
.028
.025
.033
.029
.027
.036 | 0.662
.853
1.043
1.218
1.324
1.398
1.480
1.537
1.517
1.445
1.343
1.243 | -0.898853736624498353189020 .114 .209 .229 .309 | -0.014
014
001
001
.003
.005
0
007
005
.008
.025
.043
.074 | | 70 | 1.277
C | .309
T _{T,S} = 0.0 | .094
30 | 1.202 | .458 $T,s = 0.3$ | .107 | | 5
10
15
20
25
30
35
40
45 | 0.789
1.044
1.300
1.505
1.659
1.633
1.546
1.498
1.436 | -0.623
546
437
295
146
.011
.159
.273
.362 | -0.057
050
043
056
047
057
065
056
033 | 0.940
1.250
1.554
1.798
1.995
1.518
1.419
1.336 | -0.238
-0.238
152
025
.149
.317
.408
.514 | -0.134
125
126
141
145
175
167
169 | | α | $c_{\mathtt{L},\mathtt{s}(\mathrm{fus})}$ | | | | | | | | |---|--
---|---|---|--|--|--|--| | deg | $C_{T,S} = 0.90$ | $C_{T,s} = 0.80$ | $C_{\mathrm{T,S}} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
55
60
65
70 | -0.025
023
033
032
026
019
010
003
.004
.007
.010
.016
.011
006 | 0.004
0
0
.008
.023
.044
.057
.065
.066
.055
.049
.044
.037 | 0.031
.036
.043
.053
.066
.078
.073
.072
.064 | 0.034
.038
.051
.057
.067
.015
.034
.034 | | | | | ## TABLE 3.– AERODYNAMIC DATA FOR DOWNAT-TIP ROTATION, BASIC LEADING $E\mathrm{DGE}, \ A\mathrm{ND} \quad \delta_f = 40^O$ ### (a) Wing data | | r | 1 - | ı | ı | 1 | I : | |---|---|---|--|--|---|--| | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $C_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | | deg | (| $C_{T,s} = 0.90$ $C_{T,s} = 0.8$ | | T,s = 0.8 | 0 | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.770
.909
1.047
1.173
1.288
1.335
1.422
1.424
1.407
1.380
1.327
1.270
1.215
1.182 | -0.930
853
758
636
516
390
251
127
.002
.111
.208
.281
.321
.368
.426 | -0.062
059
050
053
058
049
041
035
016
.004
.019
.041
.073
.103 | 0.900
1.082
1.258
1.415
1.472
1.527
1.576
1.591
1.496
1.393
1.299
1.246 | -0.770
683
567
427
300
134
.028
.175
.268
.299
.333
.407 | -0.086
078
083
080
077
078
075
071
052
032
007 | | | C | $C_{T,s} = 0.$ | 60 | $C_{T,s} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50 | 1.072
1.337
1.581
1.741
1.832
1.722
1.566
1.466
1.403
1.329 | -0.497
386
247
073
.084
.229
.317
.392
.463
.515 | -0.140
138
148
152
156
142
124
082
064
029 | 1.258
1.594
1.889
2.112
2.243
1.519
1.395
1.318 | -0.100
.038
.198
.390
.568
.533
.636
.730 | -0.218
230
230
240
233
196
202
180 | ## (b) Fuselage data | | 1 | ** | | - 7 | | | | | |---|--|--|---|---|--|--|--|--| | α | | $^{ m C_{L,s(fus)}}$ | | | | | | | | deg | $C_{T,s} \approx 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | -0.042
045
039
035
030
018
012
008
0
.010
.014
017
023
027
028 | -0.006
007
0
.009
.024
.045
.061
.066
.050
.033
.028 | 0.042
.047
.057
.069
.072
.078
.059
.048
.037
.025 | 0.065
.069
.085
.097
.088
.025
.027 | | | | | ## table 4.- Aerodynamic data for downat-tip rotation, basic leading edge, and $~\delta_f = 60^{\rm o}$ ## (a) Wing data | | | | | · · · | , | | |---|---|--|---|---|--|---| | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | | deg | (| $C_{T,S} = 0.$ | .90 | C | $T_{,s} = 0.8$ | 80 | | 5
10
15
20
25
30
35
40
45
50
60
65
70 | 0.943
1.069
1.171
1.267
1.383
1.401
1.411
1.397
1.365
1.320
1.260
1.193
1.149 | -0.763
672
557
441
319
182
053
.079
1.80
.289
.361
.397
.435
.479 | -0.116
116
111
112
104
111
092
091
070
069
048
014
.010 | 1.138
1.316
1.443
1.562
1.581
1.599
1.581
1.556
1.444
1.301
1.232
1.179
1.107 | -0.592
477
344
197
054
.098
.339
.383
.373
.427
.468
.517 | -0.160
165
154
153
141
141
138
076
032
006
.003
.039 | | | | L | l.
en | | | | | | | $C_{T,s} = 0.$ | | | T,s = 0.3 | | | 5
10
15
20
25
30
35
40
45
50 | 1.341
1.618
1.821
1.887
1.894
1.687
1.481
1.385
1.307
1.221 | -0.287
134
.025
.183
.342
.409
.417
.481
.532
.565 | -0.219
231
236
214
213
158
103
076
049
011 | 1.630
1.886
2.149
2.348
2.282
1.427
1.327
1.264 | 0.159
.304
.489
.623
.833
.671
.763
.863 | -0.282
278
288
318
281
186
176
164 | | | | - | | | |---|---|--|--|--| | α | | $\mathrm{c_{L,s}}$ | s(fus) | | | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | 5
10
15
20
25
30
35
40
45
50
65
70 | -0.049054045041042034026021026027043047049042 | -0.005
003
.014
.028
.038
.049
.053
.027
.007
006
014
005 | 0.061
.072
.078
.081
.074
.068
.036
.023
.002
012 | 0.098
.094
.118
.115
.081
.009
.004
009 | ## Table 5.- Aerodynamic data for downat-tip rotation, basic leading edge with fences on, and $~\delta_f=0^{\rm O}$ ## (a) Wing data | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | C _{L,s} | $c_{\mathrm{D,s}}$ | C _{m,s} | |--|--|--|---|--|--|---| | deg | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 90 | (| $C_{T,S} = 0.$ | 80 | | 5
10
15
20
25
30
35
45
55
665
75 | 0.306
.464
.613
.752
.899
.107
1.207
1.298
1.350
1.392
1.408
1.385
1.353 | -1.127
-1.107
-1.053
978
909
795
676
550
416
268
114
.010
.135
.249
.343 | 0.151
.160
.175
.190
.195
.197
.205
.204
.202
.193
.199
.208
.223
.240 | 0.336
.514
.692
.857
1.023
1.148
1.258
1.369
1.431
1.451
1.322
1.288
1.271 | -0.983
942
891
817
716
589
460
309
152
007
095
.192
.285
.380 | 0.130
.140
.170
.177
.188
.197
.194
.193
.168
.179
.192
.214 | | | C | $C_{T,s} = 0.$ | 60 | C _{T,s} = 0.30 | | | | 5
10
15
20
25
30
35
40
45
50 | 0.379
.603
.815
1.037
1.233
1.376
1.283
1.317
1.298
1.310 | -0.717
687
616
530
415
271
110
.020
.144
.269 | 0.090
.127
.141
.168
.174
.182
.112
.108
.115
.107 | 0.444
.711
.954
1.194
1.207
1.250
1.292
1.321 | -0.355
320
228
132
.005
.162
.305
.456 | 0.033
.071
.099
.122
.083
.051
.023 | ### (b) Fuselage data | α | | C _{L,s(fus)} | | | | | | | |---|---|---|--|--|--|--|--|--| | deg | $C_{T,S} = 0.90$ | $C_{T,S} = 0.80$
 $C_{T,s} = 0.60$ | $C_{T,S} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
60
65
70 | 0.016
.003
010
009
006
001
.001
.002
.004
.006
.017
.021
.027 | 0.018
.016
.014
.019
.024
.041
.044
.051
.059
.066
.061
.074 | -0.002
.017
.019
.024
.041
.061
.059
.069
.062 | -0.019
018
011
.017
.006
.022
.025
.042 | | | | | # Table 6.- Aerodynamic data for downat-tip rotation, basic leading edge with fences on, and $~\delta_f=20^o$ ### (a) Wing data | α, | $c_{\mathrm{L,s}}$ | $c_{D,s}$ | C _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | |---|--|--|---|---|--|--| | α,
deg | С | T,s = 0.9 | 0 | C ₇ | r,s = 0.8 | 0 | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70 | 0.578
.733
.887
1.031
1.151
1.258
1.363
1.435
1.480
1.507
1.511
1.463
1.432
1.381 | -1.026
965
897
795
676
542
396
241
098
.062
.195
.307
.415
.487 | 0.003
.015
.013
.023
.024
.017
.013
.016
.014
.020
.031
.041
.053
.076
.103 | 0.690
.886
1.063
1.230
1.361
1.475
1.579
1.647
1.662
1.315
1.276
1.250 | -0.890
823
729
608
465
310
135
.037
.192
.327
.207
.291 | -0.025
-014
-008
-005
-010
-020
-023
-026
0026
.050
.081 | | | С | T,s = 0.6 | 0 | C | r,s = 0.3 | 0 | | 5
10
15
20
25
30
35
40
45
50 | 0.800
1.055
1.371
1.595
1.712
1.789
1.828
1.494
1.360
1.354 | -0.622
532
444
286
116
.074
.257
.289
.328
.456 | -0.071
067
057
076
073
086
092
083
054 | 0.933
1.251
1.567
1.844
2.075
1.614
1.608
1.329 | -0.221
129
008
.165
.344
.454
.614 | -0.138
135
128
136
141
193
196
155 | | α, | | ${ m c}_{ m L,s(fus)}$ | | | | | | | | |---|--|---|---|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70 | -0.018028030031026018011002 .004 .016 .026 .031 .033 .020 .006 | 0.012
.008
.010
.019
.038
.053
.068
.076
.088
.093
.070
.061 | 0.032
.047
.057
.061
.082
.105
.114
.077
.049 | 0.051
.059
.062
.086
.096
.054
.075
.030 | | | | | | ## table 7.- Aerodynamic data for downat-tip rotation, basic leading edge with fences on, and $~\delta_f=40^o$ ## (a) Wing data | | | . – | | | | | |---|--|---|---|---|--|--| | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | $C_{\mathrm{m,s}}$ | | deg | | $C_{\mathbf{T},\mathbf{S}} = 0.$ | 90 | C. | r,s 0.80 | _ | | 5
10
15
20
25
30
35
40
45
55
60
65
70 | 0.767
921
1.069
1.202
1.305
1.398
1.483
1.530
1.546
1.507
1.462
1.395
1.333
1.268 | -0.923
844
746
621
492
342
179
016
.117
.272
.394
.487
.558
.628
.666 | -0.056
055
051
063
060
067
071
070
053
047
039
022
.002
.029 | 0.908
1.097
1.276
1.434
1.549
1.653
1.712
1.699
1.627
1.288
1.250 | -0.763
670
543
400
244
063
120
289
418
512
328
421
490 | -0.083
082
087
083
090
103
113
108
090
062
003
.013 | | | | C _{T,s} 0.60 | | C ₇ | r,s = 0.3 | 0 | | 5
10
15
20
25
30
35
40
45
50
55 | 1.091
1.355
1.615
1.805
1.941
1.916
1.596
1.466
1.323
1.312
1.246 | -0.487
373
231
056
.126
.319
.309
.407
.432
.519
.581 | -0.142
146
155
162
166
165
136
114
076
039
007 | 1.279
1.613
1.915
2.175
1.775
1.679
1.648
1.313 | -0.089
.029
.199
.400
.461
.613
.758
.723 | -0.221
222
231
243
218
241
209
182 | ## (b) Fuselage data | α, | | ${ m c_{L,s(fus)}}$ | | | | | | | |---|---|---|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | -0.026
030
033
029
022
015
005
005
.010
.021
.029
.032
.028
.002 | 0.008
.007
.014
.023
.039
.057
.074
.077
.087
.086
.029
.008 | 0.049
.049
.068
.082
.099
.111
.114
.054
.043
.042 | 0.087
.095
.102
.118
.066
.074
.072
.030 | | | | | ## Table 8.- Aerodynamic data for down- at-tip rotation, basic leading edge with fences on, and $\delta_f = 60^{\circ}$ ### (a) Wing data | | | _ | | | | | |---|--|---|--|--|---|--| | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $C_{L,s}$ | C _{D,s} | C _{m,s} | | deg | C | T,s = 0.9 | 90 | C ₇ | r,s = 0.8 | 0 | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.962
1.107
1.222
1.326
1.395
1.455
1.465
1.506
1.509
1.465
1.405
1.334
1.262
1.186 | -0.749
654
531
391
269
110
.040
.192
.336
.435
.520
.573
.612
.627
.660 | -0.125
119
122
124
120
122
122
124
107
088
067
050
027
.010
.038 | 1.119
1.308
1.458
1.571
1.644
1.706
1.668
1.623
1.256
1.237
1.192
1.123 | -0.579
456
309
153
.005
.173
.339
.466
.577
.356
.482
.532 | -0.151
159
158
154
168
165
154
126
102
035
010
.015 | | | С | T,s = 0.6 | 0 | $\mathbf{c_{T}}$ | ,s = 0.30 |) | | 5
10
15
20
25
30
35
40
45
50 | 1.351
1.604
1.827
1.976
2.034
1.934
1.476
1.312
1.228
1.201 | -0.283
130
.045
.238
.410
.538
.407
.444
.495
.574 | -0.224
223
236
241
233
201
134
081
069
033 | 1.602
1.874
2.133
2.376
1.683
1.623
1.292 | 0.115
.250
.432
.686
.590
.726
.729 | -0.298
274
284
302
225
218
175 | | | I | | | | | | | | |---|--|--|--|---|--|--|--|--| | α, | $\mathrm{c_{L,s(fus)}}$ | | | | | | | | | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70 | -0.030032029018020012010013004 .003 .021 .013004 .002012 | 0.023
.032
.036
.042
.047
.065
.080
.084
.089
.019
.003
002 |
0.066
.075
.085
.103
.113
.111
.041
.021
.003
010 | 0.115
.123
.128
.158
.068
.060
.021 | | | | | ## Table 9.- Aerodynamic data for down- at-tip rotation, inboard slat, $\label{eq:delta} \text{And} \quad \delta_f = 20^o$ ### (a) Wing data | | | | | . 3 | | | |---|--|---|--|--|---|--| | α, | $c_{L,s}$ | $c_{D,s}$ | c _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | | deg | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 90 | C | $C_{T,s} = 0.$ | 80 | | 5
10
15
20
25
30
35
40
45
50
65
70 | 0.545
.708
.860
1.001
1.117
1.219
1.274
1.339
1.373
1.398
1.400
1.379
1.382
1.343 | -1.053
989
914
823
717
595
473
332
199
081
044
143
267
355 | -0.001
.014
.014
.024
.032
.024
.023
.029
.033
.041
.052
.068
.080 | 0.627
.824
1.024
1.203
1.330
1.442
1.475
1.509
1.520
1.497
1.462 | -0.914
844
754
641
503
369
237
079
.056
.168 | -0.022
-013
.003
.003
.004
.010
.012
.011
.012
.036
.069 | | | (| $C_{T,s} = 0.$ | 60 | c | $T_{T,s} = 0.5$ | 30 | | 5
10
15
20
25
30
35
40
45
50 | 0.703
.983
1.267
1.512
1.676
1.808
1.856
1.672
1.669
1.617 | -0.636
556
442
308
150
.014
.180
.280
.444
.540 | -0.070
064
057
051
044
038
039
026
008 | 0.777
1.148
1.508
1.820
2.061
1.848
1.866
1.857 | -0.251
159
028
.125
.300
.440
.566
.687 | -0.142
132
128
122
109
148
127
116 | ### (b) Fuselage data | α, | | $c_{L,s(\mathrm{fus})}$ | | | | | | | | |--|--|---|---|---|---|--|--|--|--| | deg | | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 10
15
20
25
30
45
45
50
65
70 | | -0.009021022021015009006 0 .004 .009 .004 .009006 | 0.020
.008
.004
.007
.020
.029
.043
.051
.048
.045 | 0.055
.043
.040
.046
.058
.067
.071
.058
.066
.055 | 0.068
.058
.038
.038
.051
.029
.025 | | | | | ## table 10.- aerodynamic data for downat-tip rotation, inboard slat, $\label{eq:delta} \text{And} \quad \delta_f = 40^o$ ## (a) Wing data | α, | $c_{L,s}$ | $c_{D,s}$ | C _{m,s} | $c_{L,s}$ | $c_{D,s}$ | C _{m,s} | |---|--|--|---|--|--|--| | deg | C | T,s = 0.9 | 00 | C | $_{\mathrm{T,s}}$ = 0.8 | 30 | | 5
10
15
20
25
30
35
40
45
50
60
65 | 0.731
.886
1.028
1.157
1.241
1.312
1.347
1.380
1.379
1.372
1.373
1.368
1.317 | -0.949
873
773
655
550
426
302
171
054
.165
.278 | -0.054
052
045
044
045
040
028
020
013
002
.013
.028
.040 | 0.855
1.037
1.229
1.380
1.475
1.526
1.526
1.536
1.472
1.424 | -0.793
694
589
449
318
173
039
.100
.190
.274
.353 | -0.097
081
087
074
068
058
050
043
010 | | | | $C_{T,s} = 0$ | .60 | C | $c_{T,s} = 0.3$ | 30 | | 5
10
15
20
25
30
35
40
45 | 0.997
1.293
1.553
1.762
1.896
1.976
1.906
1.671
1.680 | -0.504
396
248
085
.091
.259
.382
.409
.574 | -0.139
135
145
141
132
127
102
060
057 | 1.130
1.521
1.860
2.142
2.309
2.421
2.202
2.015
1.746 | -0.104
.015
.184
.374
.571
.766
.815
.866
.886 | -0.211
224
218
214
212
192
134
088
066 | | α, | C _{L,s(fus)} | | | | | | | | | |---|--|---|---|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
45
50
65 | -0.030
033
030
026
019
014
013
008
003
008
017
015
026 | 0.007
.004
.008
.017
.025
.036
.048
.039
.033
.026 | 0.055
.049
.052
.061
.073
.075
.065
.052 | 0.093
.080
.072
.079
.099
.091
.058
.041 | | | | | | # table 11.- Aerodynamic data for downat-tip rotation, inboard slat, $\text{And} \quad \delta_f = 60^o$ ## (a) Wing data | α, | $c_{\mathrm{L,s}}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | C _{L,s} | $c_{\mathrm{D,s}}$ | C _{m,s} | |---|---|--|--|---|--|---| | deg | (| $C_{\mathbf{T},\mathbf{S}}=0.$ | 90 | C | r,s = 0.8 | 0 | | 5
10
15
20
25
30
35
40
45
50
65
70 | 0.963
1.095
1.200
1.286
1.325
1.369
1.381
1.376
1.349
1.340
1.340
1.242
1.214
1.190
1.160 | -0.778678568452346217096 .015 .099 .196 .273 .307 .3370 .433 .533 | -0.123
-123
-120
-104
-092
-094
-083
-062
-049
-016
006
029
.046
.057 | 1.116
1.291
1.419
1.525
1.578
1.558
1.549
1.514
1.472
1.401
1.321 | -0.605
489
370
234
083
.038
.156
.261
.329
.368
.427
.545 | -0.167
164
152
137
135
117
096
072
038
005
.024 | | | (| $C_{T,s} = 0.$ | 60 | C, | $\Gamma,s=0.3$ | 0 | | 5
10
15
20
25
30
35
40
45
50 | 1.323
1.549
1.772
1.927
1.984
1.939
1.746
1.576
1.573
1.491 | -0.295
162
004
.169
.327
.463
.446
.476
.651
.725 | -0.217
222
215
202
185
151
071
050
047
005 | 1.526
1.858
2.128
2.313
2.401
2.367
2.156
1.797
1.657 | 0.103
.260
.444
.637
.830
.945
.953
.865
.964 | -0.310
299
286
280
255
211
119
060
059 | ### (b) Fuselage data | α, | ${ m C_{L,s(fus)}}$ | | | | | | | | | |---|---|---|---|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
55
60
65
70 | -0.036038029022019015010011016032051046057047 | 0.008
.013
.025
.036
.043
.043
.036
.029
.018
.005
012
013 | 0.071
.062
.062
.069
.081
.073
.047
.027
.025
.020 | 0.124
.114
.104
.098
.099
.075
.040
.007 | | | | | | # Table 12.- Aerodynamic data for down-attip rotation, inboard slat with fences on, and $~\delta_f=20^{\rm o}$ ## (a) Wing data | | , | | | | τ. | | | |---|--|--|--|---|--
---|--| | α, | $c_{\mathrm{L,s}}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $c_{\mathrm{L,s}}$ | C _{D,s} | C _{m,s} | | | deg | C | $C_{T,s} = 0.90$ | | | $C_{T,S} = 0.80$ | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.572
.722
.881
1.032
1.160
1.263
1.374
1.450
1.508
1.520
1.426
1.408
1.317
1.287 | -1.038
982
907
805
696
566
419
261
110
.017
.068
.165
.234
.295
.380 | -0.004
.003
.012
.016
.020
.018
.020
.021
.028
.045
.060
.074
.099 | 0.649
.854
1.046
1.238
1.379
1.517
1.613
1.702
1.741
1.504
1.471
1.412
1.475
1.392 | -0.904
839
738
625
491
339
153
.026
.192
.160
.257
.331
.567 | -0.031
023
009
005
002
001
004
001
.032
.060
.088
.103
.134 | | | | C | T,S = 0.6 | 60 | С | T,s = 0.3 | 80 | | | 5
10
15
20
25
30
35
40
45
55 | 0.722
1.025
1.302
1.533
1.744
1.919
2.001
1.827
1.744
1.713
1.614 | -0.619
544
441
284
136
.056
.248
.347
.475
.600
.697 | -0.079
068
054
056
041
040
049
039
027
014 | 0.789
1.160
1.541
1.841
2.119
2.270
1.953
1.884 | -0.247
150
030
.144
.329
.549
.594 | -0.154
141
132
123
122
110
137
118 | | | α, | ${ t C_{L,s(fus)}}$ | | | | | | | | |---|--|---|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70 | -0.015028035035030021011008002 .004 .006 .003015025015 | 0.013
.004
.002
.009
.020
.033
.051
.055
.062
.056
.057
.043
.031 | 0.055
.047
.044
.052
.069
.078
.097
.075
.066
.065 | 0.072
.069
.056
.062
.081
.071
.022
.043 | | | | | ## Table 13.- aerodynamic data for down-attip rotation, inboard slat with fences on, and $~\delta_f = 40^{\rm o}$ ### (a) Wing data | Ì | α,
deg | $c_{\mathrm{L,s}}$ | | C _{m,s} | | c _{D,s} | C _{m,s} | | |---|---|--|--|--|--|---|--|--| | ļ | ueg | 9 | $C_{T,S} = 0.90$ | | | $C_{T,S}=0.80$ | | | | | 5
10
15
20
25
30
45
55
60
65
70
75 | 0.761
.912
1.063
1.202
1.306
1.411
1.495
1.548
1.576
1.530
1.404
1.317
1.264 | -0.941
866
765
641
361
194
039
.108
.226
.364
.340
.329
.366
.425 | -0.067
066
061
062
066
063
066
061
058
040
027
.010
.047
.070 | 0.933
1.144
1.350
1.517
1.662
1.778
1.856
1.907
1.862
1.811
1.505
1.434
1.516
1.431 | -0.842
736
609
457
286
101
.097
.289
.426
.561
.379
.447
.736
.794 | -0.100
089
099
088
108
107
099
080
053
.027
.052
.069 | | | | | (| $C_{T,s} = 0.$ | 60 | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50 | 1.018
1.330
1.588
1.799
1.989
2.088
2.117
2.014
1.686
1.644
1.541 | -0.491
386
240
067
.113
.318
.499
.648
.563
.693
.747 | -0.150
152
159
153
144
141
117
053
032
.017 | 1.156
1.536
1.886
2.177
2.393
2.449
1.885
1.807
1.689 | -0.098
.019
.180
.380
.594
.830
.695
.789
.882 | -0.225
229
222
223
223
231
147
119
086 | | ## (b) Fuselage data | $ _{\alpha,}$ | | | | | | |---------------|---|--|---|---|---| | C | leg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | -0.035
039
039
035
029
011
011
007
.007
.006
015
029
023 | 0.002
0 .003
.017
.027
.045
.057
.064
.070
.078
.043
.022
.034 | 0.057
.057
.056
.072
.084
.093
.113
.099
.051
.043
.032 | 0.100
.097
.091
.101
.107
.089
.011
.015
.028 | # Table 14.- Aerodynamic data for down-attip rotation, inboard slat with fences on, and $~\delta_f = 60^{\rm O}$ ### (a) Wing data | 1 | | | | ı | | | |---|---|---|--|--|---|--| | α, | 1 | $c_{\mathrm{D,s}}$ | Cm,s | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | Cm,s | | deg | C | $T_{,s} = 0.9$ | 90 | C | $C_{T,s} = 0.$ | 80 | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.957
1.112
1.225
1.334
1.412
1.522
1.536
1.544
1.502
1.448
1.395
1.327
1.246
1.177
1.103 | -0.769
663
537
414
276
120
.025
.178
.320
.441
.528
.603
.673
.708
.735 | -0.129132129128126126114103089064043025 .005 .021 | 1.123
1.320
1.471
1.596
1.668
1.732
1.760
1.752
1.698
1.324
1.408
1.324 | -0.598459336180013160 .324 .481 .577 .684 .432 .766 .817 | -0.174
180
167
168
170
158
145
140
077
.014
.002
.027 | | | C | T,s = 0.6 | 30 | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 30 | | 5
10
15
20
25
30
35
40
45
50 | 1.364
1.601
1.802
1.978
2.054
2.119
2.078
1.949
1.749
1.558
1.466 | -0.285
155
.007
.192
.362
.558
.697
.804
.778
.764 | -0.234
227
219
213
199
171
158
124
052
012
028 | 1.549
1.862
2.094
2.302
2.418
1.951
1.877
1.838 | 0.109
.249
.414
.629
.825
.712
.816
.944 | -0.304
288
262
248
242
133
124
103 | | α, | | $c_{\mathrm{L,s}}$ | | | |---|---|--|---|---| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.046
.049
.037
.027
.023
.017
.014
.015
.013
.011
.002
.014
.020
.025
.017 | -0.002
.005
.025
.039
.045
.053
.062
.065
.078
.075
.016 | 0.061
.063
.076
.089
.093
.105
.110
.085
.055
.031 | 0.126
.128
.109
.119
.122
.054
.038
.043 | # TABLE 15.- AERODYNAMIC DATA FOR UP-ATTIP ROTATION, BASIC LEADING EDGE, $AND \quad \delta_{\mathbf{f}} = \mathbf{0}^{O}$ ## (a) Wing data | α,
deg | | c _{D,s} | L | ! | i | 1] | |---|--|--|---|--|---|---| | ueg | (| $C_{T,s} = 0.90$ | | | $C_{T,S} = 0.$ | 80 | |
5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.412
.567
.711
.844
.967
1.059
1.153
1.231
1.290
1.361
1.365
1.372
1.356
1.329 | -1.119
-1.064
991
800
694
575
460
327
197
070
.061
.180
.297 | 0.169
.184
.196
.195
.190
.195
.198
.201
.200
.196
.197
.189
.194
.196 | 0.284
.466
.653
.831
.925
1.107
1.205
1.309
1.387
1.430
1.458
1.473
1.459
1.420 | -1.011
965
913
832
732
613
480
339
195
052
.088
.222
.339
.454 | 0.141
.152
.179
.194
.200
.209
.207
.200
.206
.203
.209
.215
.213
.218 | | | С | T,s = 0.6 | 30 | $C_{T,s} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50 | 0.330
.556
.770
.996
1.198
1.306
1.484
1.484
1.481
1.484 | -0.739
691
629
532
417
276
125
.025
.230
.375
.487 | 0.098
.130
.144
.172
.166
.168
.175
.173
.135
.131 | 0.399
.656
.911
1.155
1.354
1.477
1.313 | -0.371
327
245
136
008
.155
.308 | 0.040
.088
.108
.133
.129
.110
.049 | ## (b) Fuselage data | α, | | $c_{\mathrm{L,s(fus)}}$ | | | | | | | | |---|---|---|---|---|--|--|--|--|--| | deg | $C_{T,S} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.016
.020
.020
.028
.036
.047
.053
.055
.058
.063
.061
.062
.056 | 0.009
.013
.016
.027
.032
.049
.068
.074
.084
.089
.094
.093
.091 | -0.009
0
.009
.017
.032
.058
.082
.091
.098
.101 | -0.033
025
015
0
.022
.030
.047 | | | | | | # TABLE 16.- AERODYNAMIC DATA FOR UP-ATTIP ROTATION, BASIC LEADING EDGE, $AND \quad \delta_f = 20^{O}$ ## (a) Wing data | α, | $c_{\mathrm{L,s}}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | C _{L,s} | C _{D,s} | Cm,s | |---|---|--|---|---|---|--| | deg | (| $C_{T,s} = 0.90$ | | | $C_{T,s} = 0.$ | 80 | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.535
.707
.853
.991
1.114
1.229
1.309
1.454
1.452
1.437
1.410
1.370
1.334
1.288 | -1.065
-1.011
916
814
696
568
428
291
149
003
.114
.218
.305
.403
.480
.538 | 0.025
.028
.026
.029
.026
.020
.016
.025
.017
.021
.027
.038
.054
.062
.084
.114 | 0.644
.833
1.021
1.193
1.345
1.429
1.489
1.543
1.564
1.578
1.507
1.402
1.403
1.323 | -0.911
828
731
609
469
322
175
019
.118
.242
.339
.447
.549
.616 | -0.014
010
003
008
012
005
009
006
001
.012
.032
.047
.060
.098
.117 | | | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 60 | c | $c_{T,s} = 0.$ | 30 | | 5
10
15
20
25
30
35
40
45
50
55 | 0.747
1.018
1.278
1.505
1.692
1.736
1.736
1.739
1.706
1.563
1.430 | -0.634
546
419
276
119
.053
.214
.353
.468
.581 | -0.070
070
071
074
069
085
064
052
038
025 | 0.893
1.222
1.554
1.786
2.027
2.014
1.928
1.628
1.421 | -0.235
137
.001
.171
.349
.533
.683
.785
.803 | -0.147
147
144
159
169
184
178
169
148 | | α, | | C _{L,s(fus)} | | | | | | | | | |---|---|---|---|---|--|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,S} = 0.30$ | | | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.020
.016
.014
.014
.022
.034
.040
.038
.039
.038
.034
.030
.024
.020 | 0.034
.036
.037
.042
.063
.079
.080
.078
.082
.084
.087
.085
.079
.079 | 0.045
.050
.060
.073
.084
.100
.113
.118
.120
.109 | 0.034
.050
.058
.066
.092
.094
.099
.087 | | | | | | | ## Table 17.- Aerodynamic data for up-attip rotation, basic leading edge, $\label{eq:delta} \text{AND} \quad \delta_f = 40^o$ #### (a) Wing data | _ | | | | | | | | | |---|--|---|---|---|---|---|--|--| | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $c_{\mathrm{L,s}}$ | $c_{\mathrm{D,s}}$ | $c_{m,s}$ | | | | deg | | $C_{T,S} = 0.$ | 90 | (| $C_{T,s} = 0.80$ | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.738
.888
1.045
1.171
1.275
1.362
1.417
1.464
1.471
1.469
1.435
1.402
1.362
1.321
1.272 | -0.934
844
750
620
489
345
210
065
.181
.272
.342
.411
.472
.508 | -0.055
052
049
067
063
055
051
040
028
012
004
024
053
077 | 0.870
1.065
1.252
1.410
1.529
1.615
1.620
1.604
1.567
1.510
1.479
1.442
1.364 | -0.784
680
554
412
261
100
.036
.167
.272
.358
.453
.566
.657
.678 | -0.097
089
098
098
097
088
046
046
017
005
.014
.047 | | | | | (| $C_{T,s} = 0.$ | 60 | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
56 | 1.039
1.319
1.566
1.745
1.886
1.837
1.819
1.756
1.690
1.625
1.571 | -0.490
370
216
042
.124
.269
.405
.504
.589
.664
.746
.688 | -0.154
160
169
178
170
153
098
075
055
027
017 | 1.243
1.567
1.858
2.086
2.255
2.073
1.926
1.582
1.314 | -0.081
.057
.224
.415
.597
.740
.841
.843
.845 | -0.231
237
238
248
248
236
199
165
157 | | | ### (b) Fuselage data | α, | | $\mathrm{c_{L,s(fus)}}$ | | | | | | | | | |---|--|---|---|---|--|--|--|--|--|--| | dég | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,S} = 0.30$ | | | | | | | | 5
10
15
20
25
30
35
40
45
50
60
65
70 | 0.011
.003
002
.005
.017
.016
.023
.021
.023
.023
.020
.014
.005 | 0.037
.037
.045
.051
.065
.080
.073
.074
.077
.072
.070 | 0.070
.073
.086
.105
.105
.112
.124
.107
.112
.098
.105
.078 | 0.083
.088
.098
.112
.107
.105
.104
.091 | | | | | | | ## TABLE 18.- AERODYNAMIC DATA FOR UP-ATTIP ROTATION, BASIC LEADING EDGE, $AND \quad \delta_f = 60^O$ #### (a) Wing data | | | | , , | | | | |---|---|--|---|---
--|--| | α, | $c_{L,s}$ | $c_{D,s}$ | C _{m,s} | $c_{L,s}$ | $c_{D,s}$ | C _{m,s} | | deg | С | T,s = 0.9 | 0 | $C_{T,s} = 0.80$ | | | | 5
10
15
20
25
30
35
45
55
66
65
75 | 0.924
1.063
1.189
1.291
1.368
1.440
1.477
1.485
1.477
1.449
1.417
1.365
1.318
1.280
1.241 | -0.766
656
535
397
260
107
.042
.156
.259
.402
.427
.447
.4485 | -0.126122133134123127125109096067040010 .023 .057 .102 | 1.121
1.276
1.431
1.563
1.648
1.676
1.642
1.607
1.550
1.463
1.416
1.364
1.283 | -0.577
456
329
173
011
.137
.232
.321
.392
.479
.680
.736 | -0.182
183
172
171
175
167
091
062
051
034
011
.014 | | 1 | C | $C_{T,s} = 0.$ | 60 | C | $c_{T,s} = 0.3$ | 30 | | 5
10
15
20
25
30
35
40
45
50 | 1.347
1.568
1.776
1.926
1.956
1.856
1.789
1.690
1.619
1.539 | -0.278152 .019 .191 .366 .450 .526 .631 .688 .740 .694 | -0.245
249
248
239
193
135
114
087
045
034 | 1.587
1.855
2.107
2.285
2.386
1.972
1.843
1.364
1.185 | 0.128
.279
.459
.665
.862
.862
.955
.859 | -0.316
291
306
298
288
210
193
154
133 | | α, | ${ m c_{L,s(fus)}}$ | | | | | | | | |---|---|---|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
45
50
65
70
75 | -0.004
007
009
004
001
.005
.012
.015
.017
.008
.003
011
021
023 | 0.030
.042
.040
.048
.035
.075
.073
.060
.054
.053
.053
.051
.058 | 0.098
.107
.115
.117
.124
.111
.106
.094
.088
.076
.047 | 0.120
.136
.133
.132
.131
.099
.090
.034
010 | | | | | ## Table 19.- Aerodynamic data for up-attip rotation, basic leading edge with fences on, and $~\delta_f=0^{\rm o}$ ## (a) Wing data | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $C_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | |---|--|--|---|--|---|---| | deg | L | T,s = 0.9 | ł | ı | $T_{T,s} = 0.8$ | . ; | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.240
.402
.555
.701
.855
.965
1.070
1.162
1.247
1.310
1.334
1.366
1.363
1.351
1.322 | -1.147 -1.114 -1.058983906790683549425291155033 .085201 .311 .406 | 0.157
.171
.180
.197
.194
.196
.192
.191
.194
.200
.197
.191
.185
.200
.207 | 0.282
.475
.656
.828
.993
1.129
1.246
1.336
1.413
1.457
1.488
1.482 | -0.999
969
910
822
724
601
466
315
170
025
.110
.243
.352 | 0.135
.150
.176
.189
.199
.203
.195
.190
.201
.201 | | | С | T,s = 0.6 | 0 | C | T,s = 0.3 | 0 | | 5
10
15
20
25
30
35
40
45
50 | 0.335
.552
.794
1.015
1.221
1.381
1.496
1.614
1.603
1.577
1.471 | -0.762
704
635
537
419
270
115
.059
.287
.450 | 0.097
.128
.151
.169
.178
.186
.183
.176
.124
.108 | 0.405
.665
.930
1.194
1.415
1.602
1.431
1.478 | -0.361
311
238
135
.011
.177
.336
.490 | 0.038
.084
.109
.137
.133
.133
.044
.041 | ### (b) Fuselage data | α, | $^{ m C_{L,s(fus)}}$ | | | | | | | | |---|---|---|--|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,S} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
50
56
67
75
80 | 0.013
.012
.017
.019
.021
.030
.036
.035
.042
.042
.042
.045
.048
.038 | 0.015
.018
.023
.031
.036
.058
.066
.075
.075
.083
.084
.089 | -0.001
.008
.024
.031
.050
.072
.091
.104
.120
.118 | -0.024
018
004
.015
.041
.069
.071 | | | | | ## table 20.- Aerodynamic data for up-attip rotation, basic leading edge with fences on, and $~\delta_f=20^{0}$ ### (a) Wing data | α, | C _{L,s} | C _{D,s} | Cm,s | C _{L,s} | $c_{\mathrm{D,s}}$ | Cm,s | |---|---|--|---|--|--|--| | deg | С | $T_{T,S} = 0.9$ | 90 | C | $C_{T,s} = 0.$ | 80 | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80 | 0.522
.684
.844
.994
1.113
1.235
1.324
1.401
1.445
1.472
1.441
1.416
1.386
1.341 | -1.052
987
901
803
674
548
396
246
094
.177
.277
.358
.450
.528
.621 | 0.018
.028
.029
.025
.012
.006
.008
.004
.006
.011
.024
.040
.063
.091 | 0.636
.826
1.023
1.203
1.236
1.476
1.557
1.635
1.633
1.593
1.525
1.462
1.413 | -0.911
827
729
605
453
293
127
.050
.192
.317
.409
.475
.540 | -0.007
005
001
004
013
029
032
028
012
.014
.049
.068 | | | С | T,s = 0.6 | 30 | C | $T_{T,S} = 0.$ | 30 | | 5
10
15
20
25
30
35
40
45
50
55 | 0.754
1.023
1.275
1.516
1.695
1.810
1.863
1.898
1.879
1.695
1.542 | -0.630
543
410
264
098
.091
.270
.455
.596
.722 | -0.070
073
070
076
081
095
101
099
087
065
057 | 0.888
1.235
1.559
1.838
2.083
2.185
2.195
1.797
1.521 | -0.234
126
001
.177
.374
.591
.786
.862
.870 | -0.142
144
143
151
170
186
196
181
165 | | α, | C _{L,s} (fus) | | | | | | | | |---|--|---|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,S} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
55
60
65
70
80 | 0.016
.013
.007
.009
.016
.025
.032
.035
.028
.026
.027
.027
.012
.001
010 | 0.033
.036
.045
.057
.073
.082
.077
.075
.071
.077
.075 | 0.046
.056
.072
.078
.099
.125
.133
.140
.140
.119 | 0.044
.058
.071
.094
.107
.146
.165
.134
.111 | | | | | # Table 21.- Aerodynamic data for up-at-tip rotation, basic leading edge with fences on, and $~\delta_f=40^{\circ}$ ## (a) Wing data | α, | $c_{L,s}$ | c _{D,s} | C _{m,s} | $c_{L,s}$ | C _{D,s} | C _{m,s} | | |---|---|---|--|--|---
--|--| | deg | (| $C_{\mathbf{T,s}} = 0.$ | 90 | C, | $C_{T,S} = 0.80$ | | | | 5
10
15
20
25
30
35
40
45
55
60
65
75 | 0.726
.884
1.026
1.168
1.281
1.369
1.455
1.517
1.514
1.481
1.437
1.391
1.352
1.318 | -0.934
847
733
616
476
328
167
016
.130
.257
.374
.426
.473
.532
.639 | -0.051
052
050
061
072
071
074
072
062
045
013
.013
.036 | 0.869
1.058
1.252
1.416
1.539
1.693
1.709
1.691
1.637
1.562
1.430
1.430 | -0.771
664
539
399
228
047
.122
.277
.395
.486
.533
.589
.655
.693 | -0.095
093
107
101
106
120
125
107
092
052
018
.005
.041
.071 | | | | (| $C_{\mathbf{T},\mathbf{s}} = 0.$ | 60 | $C_{T,S} = 0.30$ | | | | | 5
10
15
20
25
30
35
40
45
50
55 | 1.042
1.328
1.563
1.780
1.933
1.964
1.994
1.966
1.902
1.800
1.431 | -0.485
372
213
035
.161
.356
.524
.676
.771
.843
.786 | -0.154
157
168
171
180
185
172
140
109
075
050 | 1.246
1.578
1.881
2.129
2.317
2.338
2.288
2.124
1.394
1.236 | -0.073
.056
.222
.421
.623
.844
.996
1.134
.907
.940 | -0.240
-237
-223
-237
-249
-267
-248
-227
-164
-157 | | ### (b) Fuselage data | α, | C _{L,s(fus)} | | | | | | | | |---|---|---|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
75 | 0.007
0
.002
.002
.008
.009
.013
.009
0
.002
.005
0
011
012
028 | 0.040
.038
.047
.055
.067
.076
.074
.072
.068
.067
.063
.065 | 0.074
.086
.096
.108
.120
.146
.152
.152
.152
.155
.115 | 0.084
.108
.121
.125
.143
.164
.160
.152
.078
.043 | | | | | # table 22.- Aerodynamic data for up-attip rotation, basic leading edge with fences on, and $~\delta_f = 60^{\rm o}$ ### (a) Wing data | α, | $c_{L,s}$ | C _{D,s} | C _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | |---|--|---|--|--|---|---| | deg | C | T,s = 0.9 | 90 | C ₁ | r,s = 0.8 | 0 | | 5
10
15
20
25
30
35
40
45
50
55
60
70 | 0.913
1.050
1.136
1.272
1.350
1.420
1.462
1.494
1.500
1.473
1.428
1.364
1.312
1.239 | -0.760
648
524
388
253
097
.061
.281
.354
.452
.509
.507
.515
.553 | -0.115116120121111116123121117098059017 .019 .055 | 1.086
1.255
1.396
1.531
1.611
1.660
1.697
1.669
1.613
1.544
1.453
1.397
1.315
1.252 | -0.568
443
304
150
.019
.171
.333
.452
.529
.573
.624
.712
.747
.755 | -0.164
173
164
160
164
154
130
049
030
019
.022
.060 | | | С | T,s = 0.6 | 30 | C | r,s = 0.30 |) | | 5
10
15
20
25
30
35
40
45
50 | 1.316
1.530
1.737
1.889
1.964
1.980
1.935
1.935
1.777
1.777 | -0.265
135
.030
.222
.410
.570
.707
.831
.884 | -0.235
230
232
234
226
215
190
160
080 | 1.556
1.838
2.109
2.306
2.428
2.327
2.172
1.408
1.229 | 0.142
.291
.470
.672
.883
1.051
1.147
.878
.905 | -0.305
289
298
296
308
250
154
146 | | α, | $^{ m C}_{ m L,s(fus)}$ | | | | | | | | |---|--|---|---|---|--|--|--|--| | deg | $C_{T,S} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
56
60
65
70 | -0.001
005
003
0
0
002
001
007
008
004
004
012
004
038
040 | 0.035
.040
.050
.061
.068
.065
.063
.050
.040
.037
.028
.026
.035 | 0.097
.105
.118
.127
.141
.147
.143
.134
.119 | 0.130
.131
.149
.160
.172
.170
.153
.080
.051 | | | | | ## Table 23.- Aerodynamic data for up-at-tip rotation, inboard slat, $\label{eq:data} \text{AND} \quad \delta_f = 20^o$ ## (a) Wing data | α, | $c_{L,s}$ | c _{D,s} | C _{m,s} | $C_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | | |---|--|---|---|--|--|---|--| | deg | | $C_{T,s} = 0.90$ | | | $C_{T,s} = 0.80$ | | | | 5
10
15
20
25
30
35
40
45
55
60
65
70
75
80 | 0.428
.610
.761
.920
1.189
1.299
1.382
1.421
1.431
1.414
1.391
1.352
1.307 | -1.032
983
905
814
700
566
423
267
138
009
.101
.211
.296
.373
.446 | 0.048
.052
.056
.051
.046
.030
.018
.017
.017
.035
.028
.042
.054
.073
.100 | 0.534
.715
.927
1.124
1.305
1.465
1.548
1.557
1.573
1.606
1.591
1.517
1.462
1.382 | -0.885828735612473319166022 .114 .270 .385 .453 .543 | 0.079
.011
.014
.004
016
016
013
014
.010
.032
.051
.069 | | | | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 60 | $C_{T,s} = 0.30$ | | | | | 5
10
15
20
25
30
35
40
45 | 0.582
.854
1.176
1.451
1.668
1.849
1.934
1.783
1.680
1.624 | -0.621
549
442
288
116
.065
.234
.313
.470
.597 | -0.039
048
057
073
078
080
069
035
046
029 | 0.669
1.042
1.446
1.768
2.051
2.229
2.375
1.882
1.549 | -0.243
154
023
.138
.321
.529
.733
.746
.755 | -0.116
129
145
153
145
155
143
117
116 | | #### (b) Fuselage data | α | $^{ m C_{L,s(fus)}}$ | | | | | | | | |---|---|---|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75 | 0.031
.028
.023
.021
.024
.030
.038
.041
.045
.051
.050
.054
.035
.010 | 0.041
.043
.044
.052
.058
.066
.080
.082
.079
.073
.071
.064
.069 | 0.046
.063
.060
.061
.078
.081
.094
.090
.100 | 0.047
.064
.055
.052
.070
.086
.089
.065 | | | | | ## TABLE 24.- AERODYNAMIC DATA FOR UP-ATTIP ROTATION, INBOARD SLAT, $\label{eq:delta} \text{AND} \quad \delta_f = 40^o$ ## (a) Wing data | | - | | · · · · · | | | | |---|--|---|---|---
---|--| | α, | C _{L,s} | $c_{\mathrm{D,s}}$ | C _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | c _{m,s} | | deg | C | $T_{T,S} = 0.9$ | 90 | | $C_{T,s} = 0.6$ | 80 | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.579
.755
.913
1.076
1.198
1.325
1.405
1.457
1.466
1.425
1.386
1.318
1.275
1.218 | -0.953
886
769
653
525
363
217
063
.187
.260
.326
.326
.392
.464
.508 | 0
008
024
032
054
063
065
060
054
038
013
.009
.030
.048
.083
.121 | 0.674
.915
1.135
1.343
1.501
1.615
1.649
1.629
1.611
1.623
1.565
1.489
1.443
1.353 | -0.800
720
585
430
272
110
.038
.154
.253
.409
.481
.555
.612
.634 | -0.040
057
066
089
098
154
075
044
022
.008
.023
.067
.089 | | | С | T,s = 0.6 | 30 | С | T,s = 0.3 | 30 | | 5
10
15
20
25
30
35
40
45
50 | 0.817
1.170
1.489
1.733
1.905
2.027
2.027
1.764
1.741
1.539
1.385 | -0.510
409
257
067
.123
.303
.454
.428
.561
.660 | -0.105
135
160
166
170
153
131
050
052
054
029 | 1.022
1.413
1.794
2.084
2.275
2.453
2.434
1.677
1.422 | -0.119
.011
.190
.376
.571
.787
.942
.773
.804 | -0.202
224
222
232
230
225
190
131
124 | | α, | | $c_{L,s}$ | (fus) | | | | |---|--|---|---|---|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.024
.024
.025
.028
.032
.040
.045
.047
.037
.031
.026
.024
.009
002 | 0.046
.049
.058
.063
.074
.076
.086
.088
.078
.068
.062
.068
.060 | 0.062
.084
.087
.097
.103
.110
.107
.094
.094
.067 | 0.075
.095
.092
.088
.105
.104
.100
.046
.028 | | | # Table 25.- Aerodynamic data for up-at-tip rotation, inboard slat, $\label{eq:def} \text{And} \quad \delta_f = 60^o$ ## (a) Wing data | α, | $c_{L,s}$ | C _{D,s} | C _{m,s} | C _{L,s} | $c_{\mathrm{D,s}}$ | C _{m,s} | |---|---|---|--|---|--|--| | deg | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 90 | c | $c_{T,s} = 0.8$ | 80 | | 5
10
15
20
25
30
35
40
45
55
66
70
75
80 | 0.748
.914
1.061
1.198
1.312
1.399
1.450
1.450
1.455
1.396
1.334
1.303
1.273
1.220 | -0.830
735
621
461
302
137
.011
.115
.246
.340
.383
.384
.436
.502
.539
.555 | -0.059
070
075
097
116
120
130
103
073
038
005
.027
.064
.089 | 0.922
1.145
1.335
1.515
1.6164
1.664
1.626
1.578
1.579
1.439
1.375
1.300 | -0.665
536
378
203
036
.099
.205
.299
.396
.527
.603
.635 | -0.119
137
159
167
170
155
124
097
058
040
021
.015
.045
.098 | | | (| $C_{\mathbf{T},\mathbf{S}} = 0.$ | 60 | C | T,s = 0.3 | 30 | | 5
10
15
20
25
30
35
40
45
55 | 1.115
1.394
1.683
1.877
2.023
2.075
1.891
1.636
1.646
1.366
1.221 | -0.335
210
036
.162
.377
.530
.523
.462
.638
.673
.649 | -0.189
209
216
211
223
195
131
025
044
044 | 1.305
1.661
2.040
2.320
2.417
2.508
2.276
1.485
1.268 | 0.068
.226
.452
.678
.870
1.039
1.043
.787
.817 | -0.260
286
306
305
293
259
172
112
104 | ### (b) Fuselage data | α, | | | | | |--|--|---|---|--| | de | | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,S} = 0.30$ | | 10
15
20
25
30
35
40
45
50
60
75
80 | .021
.032
.039
.036
.039
.043
.043
.043
.029
.029
.029
.022
.008 | 0.041
.050
.064
.070
.075
.080
.089
.076
.062
.057
.064
.059 | 0.083
.094
.107
.112
.112
.108
.094
.074
.072
.039 | 0.111
.114
.118
.116
.118
.108
.080
.014
013 | ## Table 26.- Aerodynamic data for up-attip rotation, inboard slat with fences on, and $~\delta_f=20^{o}$ ### (a) Wing data | α,
deg | $c_{\mathrm{L,s}}$ | C _{D,s} | C _{m,s} | C _{L,s} | C _{D,s} | Cm,s | |---|--|---|---|--|--|---| | deg | C | $T_{,s} = 0.9$ | 90 | c | $c_{T,s} = 0.8$ | 30 | | 5
10
15
20
25
30
35
40
45
50
55
60
75 | 0.434
.603
.768
.923
1.063
1.190
1.306
1.387
1.437
1.464
1.439
1.405
1.333 | -1.027
975
900
802
559
410
253
107
.038
.165
.257
.339
.412 | 0.046
.053
.051
.045
.038
.023
.007
.005
.001
.003
.006
.016
.045
.068 | 0.497
.711
.922
1.141
1.330
1.478
1.580
1.643
1.685
1.67
1.544
1.479
1.411 | -0.893
827
737
626
475
308
130
.038
.196
.329
.423
.468
.539
.600 | 0.017
.022
.012
.012
.015
024
038
032
010
.022
05
.067
.099 | | | С | T,s = 0.6 | 50 | С | T,s = 0.3 | 0 | | 5
10
15
20
25
30
35
40
45
50
55 | 0.582
.857
1.190
1.468
1.680
1.881
1.972
1.970
1.889
1.751
1.555 | -0.616
541
421
269
097
.089
.279
.458
.617
.726 | -0.046
052
055
082
083
088
082
063
050 | 0.679
1.055
1.460
1.798
2.068
2.232
2.362
1.845
1.670 | -0.247
-149
-009
-156
-339
-556
-760
-758
-844 | -0.116
135
149
151
149
160
155
138
136 | | α, | | - | | | |---|--|---|---|---| | deg | $C_{T,S} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.033
.030
.023
.023
.024
.033
.032
.032
.028
.026
.023
.025
.018
002 | 0.051
.047
.051
.055
.062
.073
.084
.079
.072
.073
.071
.071 | 0.052
.068
.071
.080
.088
.095
.108
.123
.118
.115 | 0.049
.080
.069
.078
.083
.083
.089
.054
.085 | # Table 27.- Aerodynamic data for up-attip rotation, inboard slat with fences on, and $\,\,^{\circ}\!\!f=40^{o}$ ## (a) Wing data | α, | $c_{\mathrm{L,s}}$ | $c_{\mathrm{D,s}}$ | Cm,s | $C_{L,s}$ | C _{D,s} | C _{m,s} | |---|---|---|---
---|---|---| | deg | (| $C_{T,s} = 0.$ | 90 | С | T,s = 0.8 | 0 | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70 | 0.564
.734
.913
1.061
1.200
1.324
1.418
1.472
1.490
1.500
1.468
1.420
1.378
1.347
1.324 | -0.943
867
767
649
508
353
189
023
.107
.247
.358
.398
.447
.516
.585 | 0.006
.004
012
024
046
056
062
068
061
055
041
023
.050
.093 | 0.689
.899
1.137
1.362
1.523
1.633
1.691
1.717
1.701
1.669
1.579
1.489
1.418
1.347 | -0.797
700
575
419
250
069
.104
.265
.403
.500
.544
.559
.609 | -0.043
-0.058
-0.073
-0.095
-1.03
111
116
105
089
059
006
.032
.056
.087 | | | c | $C_{T,s} = 0.0$ | 30 | С | T,s = 0.3 | 30 | | 5
10
15
20
25
30
35
40
45
50
55 | 0.818
1.151
1.479
1.724
1.915
2.045
2.101
2.054
1.975
1.902
1.439
1.314 | -0.511
-390
-231
-046
.140
.332
.513
.672
.768
.852
.725
.743 | -0.105
132
154
160
166
152
125
090
047
019
.007 | 0.993
1.405
1.812
2.091
2.292
2.414
2.456
1.747
1.562 | -0.104
.026
.186
.384
.584
.831
1.012
.829
.894 | -0.185
194
226
222
215
240
218
138
127 | ## (b) Fuselage data | α, | $^{ m C}_{ m L,s(fus)}$ | | | | | | | | |---|---|---|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70 | 0.023
.023
.024
.026
.035
.035
.037
.018
.013
.012
.007
003
011 | 0.043
.047
.061
.062
.069
.077
.078
.064
.063
.057
.059
.057 | 0.065
.085
.095
.103
.117
.126
.127
.136
.123
.098
.059 | 0.083
.114
.112
.114
.113
.101
.102
.077
.076 | | | | | # TABLE 28.- AERODYNAMIC DATA FOR UP-ATTIP ROTATION, INBOARD SLAT WITH FENCES ON, AND $~\delta_f = 60^{0}$ ## (a) Wing data | α, | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | C _{L,s} | $c_{D,s}$ | Cm,s | |---|--|---|--|--|--|--| | deg | (| $C_{T,s} = 0.$ | 90 | | $C_{\mathbf{T},\mathbf{s}} = 0.$ | 80 | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.715
.885
1.032
1.177
1.291
1.393
1.454
1.487
1.482
1.451
1.408
1.345
1.304
1.277
1.256 | -0.822
725
606
435
291
110
.052
.205
.325
.441
.485
.484
.496
.553
.637 | -0.057
063
081
109
127
132
143
125
113
077
029
.015
.055
.099 | 0.907
1.124
1.325
1.487
1.606
1.685
1.716
1.719
1.649
1.592
1.492
1.400
1.346
1.267 | -0.641
501
336
166
004
.155
.317
.476
.554
.601
.628
.664
.679
.660 | -0.096
115
151
157
162
151
149
137
099
048
018
.013
.055
.098 | | ,

 | | $C_{T,s} = 0.$ | 60 | $C_{T,s} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50
55 | 1.113
1.410
1.665
1.879
2.002
2.077
2.060
2.008
1.898
1.423
1.263 | -0.313
173
006
.199
.383
.572
.719
.846
.912
.726
.692 | -0.194
210
210
231
218
207
183
145
102
050
017 | 1.298
1.672
2.057
2.297
2.441
2.489
2.390
1.564
1.392 | 0.081
.226
.431
.661
.866
1.063
1.170
.864
.917 | -0.266
268
298
288
289
266
210
125
109 | | α, | | $c_{\mathrm{L,s(fus)}}$ | | | | | | | | |---|---|---|---|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75 | 0.019
.023
.028
.036
.037
.034
.033
.028
.027
.024
.013
005
010
023
035 | 0.048
.055
.073
.076
.074
.077
.074
.058
.048
.041
.031
.044
.041 | 0.079
.098
.112
.123
.124
.131
.138
.128
.108
.040 | 0.116
.127
.141
.139
.137
.100
.094
.057
.045 | | | | | | ## Table 29.- Aerodynamic data for up-attip rotation, full-span slat with fences on, and $~\delta_f=20^{\rm o}$ ## (a) Wing data | α,
deg | $c_{\mathrm{L,s}}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | $c_{L,s}$ | C _{D,s} | C _{m,s} | |---|---|--|---|---|--|--| | ueg | | $C_{T,s} = 0$ | 0.90 | • | $C_{T,s} = 0.$ | 80 | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80 | 0.417
.589
.756
.976
1.057
1.185
1.297
1.375
1.425
1.425
1.427
1.428
1.391
1.365
1.334
1.304 | -1.013
966
898
797
681
549
408
254
107
.039
.161
.248
.328
.416
.498
.574 | 0.038
.041
.039
.029
.032
.018
0
004
008
002
.007
.026
.044
.060
.096 | 0.497
.697
.924
1.142
1.327
1.581
1.637
1.665
1.631
1.543
1.472
1.472
1.407 | -0.886
828
741
615
466
307
131
.045
.198
.325
.422
.482
.542
.612
.646 | 0.008
.012
.004
005
023
024
030
031
025
003
.029
.058
.077
.097 | | | | $C_{T,s} = 0$ | 0.60 | $C_{T,s} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50
66
65 | 0.541
.828
1.175
1.470
1.681
1.882
1.994
1.988
1.970
1.938
1.882
1.755
1.616 | -0.620
558
435
277
107
080
.271
.461
.607
730
.836
.901 | -0.038
056
069
074
072
073
064
063
045
017
.021
.058
.069 | 0.592
1.008
1.445
1.779
2.090
2.258
2.381
2.386
2.301
2.195
1.772 | -0.252
150
022
.149
.330
.562
.778
.976
1.118
1.206
1.054 | -0.095
142
145
144
133
149
127
106
067
013 | ### (b) Fuselage data | α, | ${ m c}_{ m L,s(fus)}$ | | | | | | | | | |---|--|---|---|---|--|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.031
.030
.025
.025
.026
.031
.036
.033
.033
.027
.026
.022
.014
0 | 0.049
.051
.049
.056
.065
.074
.086
.081
.073
.072
.074
.071
.069 | 0.053
.069
.072
.081
.093
.096
.114
.130
.124
.108
.095
.078 |
0.045
.078
.063
.081
.079
.077
.088
.116
.117
.111
.073 | | | | | | ## Table 30.- Aerodynamic data for up-attip rotation, full-span slat with fences on, and $~\delta_f = 40^{0}$ ## (a) Wing data | , - | | | 1 | | | | | |--|---|--|---|---|---|--|--| | α, | | $c_{\mathrm{D,s}}$ | Cm,s | C _{L,s} | $c_{\mathrm{D,s}}$ | C _{m,s} | | | deg | | $C_{T,s} = 0.$ | | .90 | | $C_{T,s} = 0.80$ | | | (| İ | °1,s | | or,s = 0.00 | | | | | 5
10
15
20
25
30
35
40
45 | 0.527
.706
.897
1.043
1.198
1.307
1.397
1.470
1.490 | -0.947
877
779
653
522
358
193
036
.110 | -0.003
003
017
029
051
065
071
066
054 | 0.631
.874
1.121
1.339
1.496
1.623
1.676
1.712
1.697 | -0.793
704
577
417
245
073
.101
.264
.392
.481 | -0.040
058
079
096
106
112
117
105
083
046 | | | 55
60
65
70
75
80 | 1.313 | .349
.393
.446
.519
.596
.601 | 037
003
.025
.072
.093
.160 | 1.591
1.501
1.420
1.342 | .550
.573
.623
.656 | 010
.039
.061
.083 | | | | | $C_{T,s} = 0.60$ | | | $C_{T,s} = 0.30$ | | | | 50
10
15
20
25
30
35
40
45
50
55 | 1.452
1.719
1.901
2.040
2.066
2.036
1.967
1.904
1.802 | -0.514
-399
-242
-055
.131
.326
.508
.664
.769
.858
.925
.922 | -0.102
187
161
160
157
146
134
109
075
037
.005 | 0.893
1.348
1.777
2.078
2.285
2.389
2.460
2.382
2.238
2.084
1.490 | -0.122
.021
.188
.381
.581
.815
1.009
1.172
1.249
1.293
1.002 | -0.181
205
228
218
203
228
193
154
120
059
017 | | | α, | C _{L,s(fus)} | | | | | | |---|--|---|---|---|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.027
.024
.024
.025
.030
.030
.032
.028
.016
.013
.011
.005
004
013
027 | 0.045
.048
.059
.065
.073
.079
.083
.069
.066
.062
.058
.056
.059 | 0.059
.082
.090
.104
.113
.119
.130
.135
.120
.101
.074 | 0.074
.105
.102
.106
.110
.099
.100
.114
.106
.088 | | | # table 31.- Aerodynamic data for up-attip rotation, full-span slat with fences on, and $~\delta_f \approx 60^o$ ## (a) Wing data | | , | | , | , | | | |---|--|---|--|---|--|--| | α, | $c_{L,s}$ | C _{D,s} | C _{m,s} | $c_{L,s}$ | $c_{\mathrm{D,s}}$ | C _{m,s} | | deg | $C_{T,s} = 0.$ | | .90 | | $C_{T,s} = 0.80$ | | | 5
10
15
20
25
30
35
40
45
50
66
70
75 | 0.667
.863
1.032
1.166
1.294
1.382
1.452
1.471
1.466
1.395
1.346
1.313
1.279 | -0.840
740
592
450
285
118
.045
.190
.320
.422
.468
.476
.502
.541 | -0.056
-0.056
-0.093
110
134
140
138
137
124
110
068
029
020
.060 | 0.836
1.100
1.308
1.485
1.603
1.671
1.698
1.697
1.644
1.576
1.491
1.396
1.343 | -0.661
517
350
178
013
.147
.303
.452
.535
.586
.636
.667
.680 | -0.100
133
167
169
170
172
149
055
029
.003
.048
.088 | | 80 | $ \begin{array}{c cccc} 1.259 & .634 & .100 \\ 1.243 & .547 & .184 \end{array} $ $ C_{T,S} = 0.60 $ | | $\begin{array}{c c} 1.208 & .669 & .130 \\ \hline C_{T,s} = 0.30 \end{array}$ | | | | | 5
10
15
20
25
30
35
40
45
50
55
60 | 1.054
1.356
1.650
1.869
2.005
2.076
2.055
1.998
1.909
1.810
1.666
1.530 | -0.348
200
012
.019
.389
.570
.714
.853
.928
.963
.957 | -0.178
203
208
221
217
198
162
136
095
034
.013 | 1.190
1.602
2.009
2.287
2.445
2.481
2.428
2.233
2.070 | 0.044
.205
.427
.670
.881
1.080
1.210
1.249
1.269 | -0.241
267
277
280
275
258
195
136
091 | (b) Fuselage data | α, | $c_{L,s(\mathrm{fus})}$ | | | | | | | |---|--|---|---|--|--|--|--| | deg | $C_{T,s} = 0.90$ | $C_{T,s} = 0.80$ | $C_{T,s} = 0.60$ | $C_{T,s} = 0.30$ | | | | | 5
10
15
20
25
30
35
40
45
50
65
70
75
80 | 0.022
.022
.030
.039
.040
.037
.031
.028
.030
.026
.007
007
014
021
033
056 | 0.044
.056
.072
.071
.079
.073
.075
.058
.045
.036
.034
.037
.038 | 0.074
.100
.113
.119
.127
.130
.141
.126
.113
.086
.082 | -0.070
069
068
066
064
051
058
056
054 | | | | Figure 1.- The positive sense of forces, moments, and angles. ex. (a) Principal dimensions are in inches; numbers in parentheses are in centimeters unless otherwise noted. Figure 2.- Principal dimensions of model, propeller blade-form curves, and sketch showing model mounted in tunnel. (b) Sectional views of leading-edge slat configuration. Figure 2.- Continued. (c) Sectional view of trailing-edge flap. Figure 2.- Continued. (d) Sectional view and location of fences. Figure 2.- Concluded. Figure 3.- Three-view drawing of model. Principal dimensions are in inches; numbers in parentheses are in centimeters. Figure 4.- Propeller blade-form curves. Figure 5.- Photograph of model. Figure 6.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Basic leading edge; $\delta_f = 0^{\circ}$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 6.- Continued. (c) Flow characteristics; $C_{T,\,S}=0.80.$ Figure 6.- Continued. (d) Flow characteristics; $c_{T,\,s}=0.60$. Figure 6.- Continued. (e) Flow characteristics; $C_{T,s} = 0.30$. Figure 6.- Concluded. Figure 7.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Basic leading edge; $\delta_f = 20^\circ$. Figure 7.- Continued. (c) Flow characteristics; $C_{\text{T,S}} = 0.80$. Figure 7.- 'Continued. Figure 7.- Continued. (e) Flow characteristics; $C_{T,S}=0.30.$ Figure 7.- Concluded. (a) Aerodynamic characteristics. Figure 8.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Basic leading edge; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 8.- Continued. (c) Flow characteristics; $C_{T,s} = 0.80$. Figure 8.- Continued. (d) Flow characteristics; $c_{T,s} = 0.60$. Figure 8.- Continued. Figure 9.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Basic leading edge; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 9.- Continued. (c) Flow characteristics; $C_{T,s} = 0.80$. Figure 9.- Continued. (d) Flow characteristics; $c_{T,s} = 0.60$. Figure 9.- Continued. $\alpha = 5^{\circ}$ $\alpha = 20^{\circ}$ $\alpha = 35^{\circ}$ $\alpha = 10^{\circ}$ $\alpha = 40^{\circ}$ $\alpha = 15^{\circ}$ $\alpha = 30^{\circ}$ (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 9.- Concluded. Figure 10.- Aerodynamic and flow characteristics of the wing with propeller rotation down at tip. Fences on; $\delta_f = 0^\circ$. (b) Flow characteristics; $C_{T,s} = 0.90$. Figure 10.- Continued. (c) Flow characteristics; $c_{T,s} = 0.80$. Figure 10.- Continued. (d) Flow characteristics; $C_{T,s} = 0.60$. Figure 10.- Continued. (e) Flow characteristics; $C_{T,S}=0.30$. Figure 10.- Concluded. Figure 11.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Fences on; $\delta_f \approx 20^\circ$.
(b) Flow characteristics; $C_{T,S} = 0.90$. Figure 11.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 11.- Continued. (d) Flow characteristics; $C_{T,s} = 0.60$. Figure 11.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 11.- Concluded. Figure 12.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Fences on; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S}=0.90.$ Figure 12.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 12.- Continued. ((d) Flow characteristics; $C_{T,S} = 0.60$. Figure 12.- Continued. (e) Flow characteristics; $c_{T,s} = 0.30$. Figure 12.- Concluded. Figure 13.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Fences on; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 13.- Continued. (c) Flow characteristics; $c_{T,\,S}=0.80.$ Figure 13.- Continued. (d) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.60.$ Figure 13.- Continued. (e) Flow characteristics; $C_{T,S}=0.30.$ Figure 13.- Concluded. (a) Aerodynamic characteristics. Figure 14.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Inboard slat on; $\delta_f = 20^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 14.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 14.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 14.- Continued. (e) Flow characteristics; $c_{T,s} = 0.30$. Figure 14.- Concluded. (a) Aerodynamic characteristics. Figure 15.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Inboard slat on; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 15.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 15.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 15.- Continued. Figure 15.- Concluded. Figure 16.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Inboard slat on; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 16.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 16.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 16.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 16.- Concluded. Figure 17.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Inboard slat on; fences on; $\delta_f = 20^\circ$. (b) Flow characteristics; $c_{T,s} = 0.90$. Figure 17.- Continued. (c) Flow characteristics; $c_{T,s} = 0.80$. Figure 17.- Continued. Figure 17.- Continued. (e) Flow characteristics; $c_{T,s} = 0.30$. Figure 17.- Concluded. Figure 18.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Inboard slat on; fences on; $\delta_f = 40^\circ$. (b) Flow characteristics; $c_{T,s} = 0.90$. Figure 18.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 18.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 18.- Continued. 100 (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 18.- Concluded. Figure 19.- Aerodynamic and flow characteristics of the wing with propeller rotation down at the tip. Inboard slat on; fences on; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 19.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 19.- Continued. (d) Flow characteristics; $C_{T,s} = 0.60$. Figure 19.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 19.- Concluded. 106 Figure 20.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Basic leading edge; $\delta_f = 0^\circ$. (b) Flow characteristics; $C_{\Bar{1},S}=0.90.$ Figure 20.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 20.- Continued. (d) Flow characteristics; $C_{T,s} = 0.60$. Figure 20.- Continued. (e) Flow characteristics; $c_{T,s} = 0.30$. Figure 20.- Concluded. Figure 21.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Basic leading edge; $\delta_f = 20^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 21.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 21.- Continued. Figure 21.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 21.- Concluded. Figure 22.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Basic leading edge; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 22.- Continued. (c) Flow characteristics; $C_{T,S}=0.80$. Figure 22.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 22.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 22.- Concluded. 121 Figure 23.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Basic leading edge; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 23.- Continued. Figure 23.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 23.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 23.- Concluded. Figure 24.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Fences on; $\delta_f = 0^{\circ}$. (b) Flow characteristics; $C_{T,s}=0.90$. Figure 24.- Continued. (c) Flow characteristics; $C_{T,s} = 0.80$. Figure 24.- Continued. Figure 24.- Continued. Figure 24.- Concluded. (a) horoughamino onareotorionos. Figure 25.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Fences on; $\delta_f = 20^\circ$. (b) Flow characteristics; $C_{T,s} = 0.90$. Figure 25.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 25.- Continued. (d) Flow characteristics; $c_{T,s} = 0.60$. Figure 25.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 25.- Concluded. (a) Aerodynamic characteristics. Figure 26.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Fences on; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 26.- Continued. (c) Flow characteristics; $C_{T,s} = 0.80$. Figure 26.- Continued. Figure 26.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 26.- Concluded. Figure 27.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Fences on; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{\mbox{\scriptsize T,S}}=0.90.$ Figure 27.- Continued. by characteristics; $c_{T,s} = 0.80$. Figure 27.- Continued. (d) Flow characteristics; $C_{T,\,S}=0.60.$ Figure 27.- Continued. (e) Flow characteristics; $c_{T,s} = 0.30$. Figure 27.- Concluded. (a) Aerodynamic characteristics. Figure 28.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Inboard slat on; $\delta_f = 20^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 28.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 28.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 28.- Concluded. Figure 29.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Inboard slat on; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 29.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 29.- Continued. Figure 29.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 29.- Concluded. Figure 30.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Inboard slat on; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S}=0.90$. Figure 30.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 30.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 30.- Continued. (e) Flow characteristics; $C_{T,s} = 0.30$. Figure 30.- Concluded. Figure 31.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Inboard slat on; fences on; $\delta_f = 20^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 31.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 31.- Continued. (e) Flow characteristics; $C_{T,S} \approx 0.30$. Figure 31.- Concluded. Figure 32.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Inboard slat on; fences on; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,s} = 0.90$. Figure 32.- Continued. (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 32.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 32.- Continued. (e) Flow characteristics; $C_{T,s} = 0.30$. Figure 32.- Concluded. Figure 33.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Inboard slat on; fences on; $\delta_f = 60^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 33.~ Continued. Figure 33.- Continued. Figure 33.- Continued. Figure 33.- Concluded. Figure 34.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Full-span slat on; fences on; $\delta_f = 20^\circ$. (b) Flow characteristics; $C_{T,s} = 0.90$. Figure 34.- Continued. (c) Flow characteristics; $C_{T,s} = 0.80$. Figure 34.- Continued. (d) Flow characteristics; $c_{T,s} = 0.60$. Figure 34.- Continued. Figure 34.- Concluded. Figure 35.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Full-span slat on; fences on; $\delta_f = 40^\circ$. (b) Flow characteristics; $C_{T,S} = 0.90$. Figure 35.- Continued. . .ga. v ss. oommaaa (c) Flow characteristics; $C_{T,S} = 0.80$. Figure 35.- Continued. (d) Flow characteristics; $C_{T,S} = 0.60$. Figure 35.- Continued. (e) Flow characteristics; $C_{T,S} = 0.30$. Figure 35.- Concluded. Figure 36.- Aerodynamic and flow characteristics of the wing with propeller rotation up at the tip. Full-span slat on; fences on; $\delta_f = 60^\circ$. (b) Flow characteristics;
$C_{T,S} = 0.90$. Figure 36.- Continued. (c) Flow characteristics; $c_{T,s} = 0.80$. Figure 36.- Continued. (d) Flow characteristics; $c_{T,s} = 0.60$. Figure 36.- Continued. (e) Flow characteristics; $C_{T,\,S}=0.30.$ Figure 36.- Concluded. Figure 37.- Fuselage lift coefficients for down-at-the-tip rotation. Basic leading edge. Figure 38.- Fuselage lift coefficients for down-at-the-tip rotation. Basic leading edge; fences on. Figure 39.- Fuselage lift coefficients for down-at-the-tip rotation. Inboard slat on. Figure 40.- Fuselage lift coefficients for down-at-the-tip rotation. Inboard slat on; fences on. Figure 41.- Fuselage lift coefficients for up-at-the-tip rotation. Basic leading edge. Figure 42.- Fuselage lift coefficients for up-at-the-tip rotation. Basic leading edge; fences on. Figure 43.- Fuselage lift coefficients for up-at-the-tip rotation. Inboard slat on. Figure 44.- Fuselage lift coefficients for up-at-the-tip rotation. Inboard slat on; fences on. Figure 45.- Fuselage lift coefficients for up-at-the-tip rotation. Full-span slat on; fences on. "The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." -NATIONAL AERONAUTICS AND SPACE ACT OF 1958 ## NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge. TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge. TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English. SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies. TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys. Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546